Heat-induced transfer of protons from chitosan to glycerol phosphate produces chitosan precipitation and gelation.
نویسندگان
چکیده
Recently, chitosan dissolved in solutions containing glycerol phosphate (GP) were found to undergo a sol-gel transition when heated and the proposed gelling mechanism was based on increasing hydrophobic interactions with temperature. Subsequently, an investigation of ionization and precipitation behavior of chitosan, including dependencies on temperature, added salt, and fraction of deacetylated monomers (fD) was performed. This latter study revealed important differences in the temperature dependence of pKa of chitosan versus GP and led us to propose an alternative hypothesis for the mechanism of gelation in chitosan-GP systems whereby heat induces transfer of protons from chitosan to glycerol phosphate thereby neutralizing chitosan and allowing attractive interchain forces to form a physical gel. To investigate this specific molecular thermogelling mechanism, temperature ramp experiments on dilute chitosan-GP solutions were performed. Chitosans with fD of 0.72 and 0.98 were used to prepare solutions with a range of molar ratios of GP to chitosan glucosamine monomer of 1.25 to 10 and with 0 or 150 mM added monovalent salt. Light transmittance measurements were performed simultaneously to indicate precipitation in these dilute systems as a surrogate for gelation in concentrated systems. Measured temperatures of precipitation ranged from 15 to 85 degrees C, where solutions with less GP (used in a disodium salt form) had lower precipitation temperatures. A theoretical model using acid-base equilibria with temperature dependent pKa's, including the electrostatic contribution from the polyelectrolyte nature of chitosan, was used to calculate the degree ionization of chitosan (alpha, the fraction of protonated glucosamine monomer) as a function of temperature and showed a significant decrease in alpha with increased temperature due to proton transfer from chitosan to GP. This heat-induced proton transfer from chitosan to GP was experimentally confirmed by 31P NMR measurements during temperature ramp experiments since the chemical shift of 31P of GP is an indicator of its level of protonation. By assuming average temperature independent values of alpha p that were calculated from measured T(p), the model was able to accurately predict measured temperatures of precipitation (T(p)) of all chitosan-GP mixtures. The resulting alpha(p) were temperature independent but increased with increased chitosan fD and with increased salt. Measurements and theory revealed that T(p) can be adjusted in a predictable manner by changing the chitosan-GP molar ratio and thereby systematically tailored to obtain a large range of precipitation temperatures. Finally, similar temperature ramp experiments using inorganic phosphate and MES in place of GP demonstrated that the temperature-induced precipitation of chitosan also occurs with these buffers, confirming that the key feature of the buffer used with chitosan is its ability to absorb heat-stimulated release of chitosan protons and facilitate chitosan neutralization. A theoretical expression for the variation of chitosan ionization degree with temperature in a system composed of two titratable species (chitosan and buffer) was derived and allowed us to establish the required characteristics of the buffer for efficient heat-stimulated proton transfer between a chitosan and the buffer. These results provide a useful explanation for the mechanism of heat-induced gelation of chitosan-based systems that could be exploited for numerous practical applications.
منابع مشابه
Ionization and solubility of chitosan solutions related to thermosensitive chitosan/glycerol-phosphate systems.
Chitosan is a linear cationic biopolymer composed of glucosamine and N-acetyl-glucosamine that is only soluble in acidic aqueous solutions and precipitates when neutralized. However, it was recently discovered that chitosan dissolved in solutions containing glycerol phosphate was soluble at near neutral pH and produced a sol-gel transition when heated. Understanding this unique thermogelling sy...
متن کاملPreparation of Chitosan Nanoparticles Loaded by Dexamethasone Sodium Phosphate
Biodegradable nanoparticulate carriers, have important potential applications for administration of therapeutic molecules. Chitosan based nanoparticles have attracted a lot of attention upon their biological properties such as biodegradability, biocom-patibility and bioadhesivity. The aim of the present investigation was to describe the synthesis and characterization of novel biodegradabl...
متن کاملDevelopment of chitosan-tripolyphosphate fibers through pH dependent ionotropic gelation.
Incorporation of phosphate groups into a material may be of particular interest as they act as templates for hydroxyapatite growth through complexation with Ca(2+) and thus improve the osteoconduction property. The phosphate groups can be incorporated into chitosan through ionotropic gelation with tripolyphosphate (TPP). Interestingly, the ion pairs formed through negatively charged phosphate g...
متن کاملCytocompatible gel formation of chitosan-glycerol phosphate solutions supplemented with hydroxyl ethyl cellulose is due to the presence of glyoxal.
To deliver and retain viable repair cells in a surgically prepared cartilage lesion, we previously developed an adhesive in situ-gelling cell carrier by suspending cells in a solution of hydroxyethyl cellulose (HEC), which was then mixed with chitosan-glycerol phosphate to form a chitosan-GP/HEC gel. The purpose of this study was to elucidate the mechanism of gelation to maximally control gel t...
متن کاملNew insights into chitosan-DNA interactions using isothermal titration microcalorimetry.
The interaction of chitosan with plasmid DNA was investigated as a function of pH, buffer composition, degree of deacetylation (DDA), and molecular weight (M(n)) of chitosan, using isothermal titration microcalorimetry (ITC). The Single Set of Identical Sites model was used to obtain the enthalpy of interaction, the binding constant, and the stoichiometry of binding. The chitosan-DNA interactio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomacromolecules
دوره 9 2 شماره
صفحات -
تاریخ انتشار 2008